You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 115 Next »

Mission Statement:

The Physical Layer Transmission Work Area provides test plans, technical documentation, and marketing papers to enable multi-vendor interoperability in deployments for both access and in-premises networks.

Work Area Director: Herman Verbueken, Nokia

Business Impact:

The focus of the PHYtx WA is to develop technical recommendations which will help service providers deploy equipment that will give a better quality of experience for their end users.

Standardized interoperability and certification, create a trusted base of equipment and services providing operators with an accelerated time to market, avoiding large investments in time and customizations. Interoperability provides invaluable intelligence as feedback to both developers and implementers of new products and services.

Scope:

  • Definition of test plans for access network physical layer transmission technologies (such as VDSL2 and Gfast) and Reverse Power Feeding technologies
  • Definition of test plans for in-premises network physical layer transmission technologies such as power line communications
  • Creation of best practice or use cases documentation for advanced features, such as  Fiber extensions, cable models.

Active Project Streams

Project Stream

Description

PS Leaders

Non-PS Assigned

Projects that don’t fit under the scope of an existing Project Stream or if they fit under the scope of more than one Project Stream, are developed under the Non-PS Assigned category. 

FANCE (Fiber Access Network Copper Extensions)

Development of technical documentation for the deployment of copper transmission technologies that extend fiber networks to end-users using existing copper infrastructure at the premises. Technologies covered include but are not limited to Gfast, G.hn and MoCA.

G.fast and RPF Certification

Development of test plans and related technical documentation for certification and performance testing of ITU-T G.fast and its associated reverse power feeding.  This work may be leveraged within certification programs operated by the Broadband Forum.

Physical Layer Transmission Work Area Email Lists

PHYtx Calls, Minutes, Agendas

See also:



Active Non-PS assigned Projects

WT/MD/SD# Projects
AbstractRelated ContributionsEditors
WT-285i2a1Copper Transmission Models for Testing above 30 MHz

This WT provides cable models which can be used in Broadband Forum Working Texts/Technical Reports for interoperability and performance testing of the transmission technologies such as ITU-T G.9701 (G.fast). These cable models provides the transfer functions of both direct path and crosstalk paths of the Loop End Access Network and addresses both the attenuation and phase of these transfer functions.

Amendment 1 adds additional cable models.

WT-285Andre Holley


Active FANCE Projects

WT/MD/SD#FANCE Projects
AbstractRelated ContributionsEditors
WT-419i2Fiber access extension over existing copper infrastructure

Provides use cases and  fiber extension architectures with its elements as a generalization that does not preclude any type of technology or deployment approach.  In the annexes these architectures are mapped to the specific technologies.

Issue 2 intends to add new Use Cases, including wholesale and 5G FMC; cover Architectural, Management and Operational aspects as wel as Technology specific aspects of PON fiber access extension over P2MP topologies

WT-419
WT-476Performance Test Plan for use of G.hn technology in access scenariosThe goal is to provide performance requirements between a G.hn Aggregation Multiplexer (GAM) and one or more G.hn Network Terminations (GNTs). The focus is on the device level (DLL and PHY) testing, similar to how TR-380 is defined.  This performance test plan will include test setup information, equipment configuration requirements, test procedures, and performance requirements for each test case.WT-476Marcos Martinez 
WT-488Architecture and Requirements for Home Distribution Networks

A Home distribution network (HDN) is the infrastructure for delivering multi-gigabit services to end users. In general, modern home networks are composed of a mix of diverse transmission technologies.

The current challenge for telecom operators and service providers seeking to roll-out future-proofed fiber-grade services is to quickly/easily/low-costly deploy reliable broadband connectivity to end users in homes and businesses over such high-performance heterogeneous home network.

This technical report intends to provide some insights into home network use cases to facilitate the task of understanding the specificities of enabling a service provider-oriented home network. 

WT-488


Active Gfast and RPF Projects

WT/MD/SD#Bonding Projects
AbstractRelated ContributionsEditors

DTP-337i4

G.fast Certification Test Plan

This document is intended to provide a certification test plan for ITU‑T Recommendation G.9700 “Fast access to subscriber terminals (G.fast) – Power spectral density specification” and G.9701 “Fast access to subscriber terminals (G.fast) – Physical layer specification”. This IR-337 is specifically conceived for the basic interoperability objectives of the Broadband Forum G.fast Certification Program.

Technical content in this test plan includes test setup information, equipment configuration requirements, test procedures, and pass/fail requirements for each test case.

Issue 4 intends to add Robust Management Channel Recovery (RMCR) and sub-carrier masking tests, tests for Low power operation and tests for accuracy and updating of reported G.fast parameters.

DTP-337Frank Van der Putten
OD-335G.fast Interop Plugfest Test PlanInteroperability among multiple chipsets and systems will be critical to the success of G.fast.  This document defines a suite of basic physical layer tests for G.fast.  The intent is to provide a structure for vendor-to-vendor interoperability tests, known as "Plugfests".OD-335
WT-338i3Reverse Power Feed (RPF) Test Plan

With short copper loops required by G.fast Distribution Point Units (DPUs) that push the deployment of the DPU/MDUs closer to the customer premise, local power and forward power may not be viable to cost or location. To power the DPU, power will come from the customer premises location over the copper pair; this is referred to as Reverse Power Feed (RPF).

This document specifies tests for the RPF functions of a DPU and the customer premises’ Power Supply Equipment (PSE) either as a stand-alone device or as a function integrated in a G.fast Network Termination.

Issue 3 will define a set of RPF-over-coax functional and safety test cases for the Power Source Equipment (PSE) implemented according to ETSI specification TS 101 548-2, either as a stand-alone device or as a function integrated in the G.fast (G.9700 and G.9701) network termination, and reversely powered DPU implementations. It will include also RPF integrated in G.hn Access and MoCA Access network termination.

WT-338Helge Tiainen 
OD-362Program Requirements for G.fast Certification Program

This document applies only to the operational aspects of the certification program, such as:

  1. What information, equipment, and support is required by companies submitting products for certification.
  2. Features, test modes, and interfaces required on/for devices being submitted for certification testing.
  3. How companies may certify similar equipment, such as derivative works or models with a subset of features.
  4. How companies with certified products may use the certification logo and other documentation about the certification program.
OD-362Lincoln Lavoie


Completed or Inactive  Project Streams

  • No labels