
1/4

Bitbucket Direct Collaboration
[OBSOLETE] Thoughts about supporting direct (and informal) collaboration without the need for pull requests.

Introduction
Alternatives
Experiment
Details
Addendum

Introduction

John Blackford and I were talking about how best to use Bitbucket to support direct informal collaboration between
members without the need for pull requests. For example a member creates some code and wants other members
to be able to see it, use it, comment on it, modify it etc. This code is a "contribution" not it's not yet been discussed
or approved by the group.

Alternatives

There are various ways to achieve this but some work better than others.

Approach Discussion

Access collaborators'
forks directly

This works, but forks are private by default, so their owners will have to allow access to
the repositories (which could include work that isn't to be shared). In order to scale, one
collaborator would need to be nominated as the "primary" one.

Use pull requests to
collaboration branches
on the project
repository

This works, but requires the formality of a pull request. Until the pull request has been
approved and merged, collaborators can't see the code.

Use direct access to
collaboration branches
on the project
repository

This works well. Collaborators create an "upstream" remote to the project repository
and can push/pull directly to/from collaboration branches. Branch permissions prevent
direct access to the master, develop, feature/xxx and release/xxx branches.

Experiment

I adjusted the . For those of you who can't access them, they now WT-369 project repository's branch permissions
look like this. The key point is that only the branches that we care about (i.e. that are part of our process) are
restricted. So we can freely create and use collaboration branches (I suggest branches called). collab/xxx

https://wiki.broadband-forum.org/display/~john.blackford@vantiva.com
https://code.broadband-forum.org/plugins/servlet/branch-permissions/USP/wt-369

2/4

Details

To make use of this you need to go to your fork's local clone and add an remote that points back to the upstream
project repository (this is the usual convention for such a remote).

% git remote -v
origin ssh://git@code.broadband-forum.org:7999/~wlupton_broadband-forum.org
/wt-369.git (fetch)
origin ssh://git@code.broadband-forum.org:7999/~wlupton_broadband-forum.org
/wt-369.git (push)

% git remote add upstream ssh://git@code.broadband-forum.org:7999/usp/wt-369.git

% git remote -v
origin ssh://git@code.broadband-forum.org:7999/~wlupton_broadband-forum.org
/wt-369.git (fetch)
origin ssh://git@code.broadband-forum.org:7999/~wlupton_broadband-forum.org
/wt-369.git (push)
upstream ssh://git@code.broadband-forum.org:7999/usp/wt-369.git (fetch)
upstream ssh://git@code.broadband-forum.org:7999/usp/wt-369.git (push)

3/4

Now create a collaboration branch, do some work, and commit it. Here I've called the branch collab/feature
 in the expectation that it might eventually become a branch, but /for-discussion feature/for-discussion

the name really doesn't matter (as long as it doesn't match one of the names already used by our process).

% git checkout develop
Switched to branch 'develop'
Your branch is up-to-date with 'origin/develop'.

% git checkout -b collab/feature/for-discussion
Switched to a new branch 'collab/feature/for-discussion'

% vi for-discussion.txt
% git add for-discussion.txt
% git commit -m"Added 'for-discussion' discussion for discussion"
[collab/feature/for-discussion f734c89] Added 'for-discussion' discussion for
discussion
 1 file changed, 1 insertion(+)
 create mode 100644 for-discussion.txt

Now push the collaboration branch to the project repository.

% git push upstream
Counting objects: 3, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (2/2), done.
Writing objects: 100% (3/3), 316 bytes | 0 bytes/s, done.
Total 3 (delta 1), reused 0 (delta 0)
remote:
remote: Create pull request for collab/feature/for-discussion:
remote: https://code.broadband-forum.org/projects/USP/repos/wt-369/compare
/commits?sourceBranch=refs/heads/collab/feature/for-discussion
remote:
To ssh://git@code.broadband-forum.org:7999/usp/wt-369.git
 * [new branch] collab/feature/for-discussion -> collab/feature/for-discussion

The really nice thing is that, assuming that all the forks were created with "Enable fork synching" checked (this is
the default), the collaboration branch will now be immediately propagated to all the forks!

Addendum

You might be wondering what will happen now that the branch is available collab/feature/for-discussion
via both of my remotes, i.e. in the project repository via my remote and in my fork via my upstream origin
remote. Let's take a look.

4/4

% git branch --all | grep for-discussion
* collab/feature/for-discussion
 remotes/origin/collab/feature/for-discussion
 remotes/upstream/collab/feature/for-discussion

That's perfect. We get to choose which remote to push to, and we can also set an explicit upstream branch.
However, one thing is worrying me: why does work but not work? I git push upstream git push origin
can't see which piece of config is causing this. Any ideas?

% git push origin
fatal: The current branch collab/feature/for-discussion has no upstream branch.
To push the current branch and set the remote as upstream, use

 git push --set-upstream origin collab/feature/for-discussion

% git push upstream
Everything up-to-date

% git config --list | grep origin
remote.origin.url=ssh://git@code.broadband-forum.org:7999/~wlupton_broadband-forum.
org/wt-369.git
remote.origin.fetch=+refs/heads/*:refs/remotes/origin/*
branch.master.remote=origin
branch.develop.remote=origin
branch.feature/re-generate-usp-proto-python.remote=origin
branch.feature/fix-readme-files-for-new-structure.remote=origin
% git config --list | grep upstream
remote.upstream.url=ssh://git@code.broadband-forum.org:7999/usp/wt-369.git
remote.upstream.fetch=+refs/heads/*:refs/remotes/upstream/*

	Bitbucket Direct Collaboration

